Autoencoder¶
The LitAutoEncoder is a PyTorch Lightning module designed for unsupervised learning tasks. It consists of an encoder and a decoder network.
Key Features¶
- Encoder: Compresses input data into a latent representation.
- Decoder: Reconstructs the input data from the latent representation.
- Loss Function: Mean Squared Error (MSE) is used to measure reconstruction quality.
Autoencoder Class API¶
uv_datascience_project_template.lit_auto_encoder
¶
LitAutoEncoder(encoder, decoder)
¶
Bases: LightningModule
A simple autoencoder model.
PARAMETER | DESCRIPTION |
---|---|
encoder
|
The encoder component, responsible for encoding input data.
TYPE:
|
decoder
|
The decoder component, responsible for decoding encoded data.
TYPE:
|
Source code in src/uv_datascience_project_template/lit_auto_encoder.py
16 17 18 19 |
|
configure_optimizers()
¶
Configure the Adam optimizer.
Source code in src/uv_datascience_project_template/lit_auto_encoder.py
42 43 44 45 |
|
training_step(batch, batch_idx)
¶
Performs a single training step for the model.
PARAMETER | DESCRIPTION |
---|---|
batch
|
A tuple containing the input data (x) and the corresponding labels (y).
TYPE:
|
batch_idx
|
The index of the current batch.
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
Tensor
|
The computed loss for the current training step.
TYPE:
|
Source code in src/uv_datascience_project_template/lit_auto_encoder.py
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 |
|